Электрогенез миокарда сердца потенциал действия миоцитов желудочков

Билет №1: Особенности возбуждения одиночного кардиомиоцита желудочков. Потенциал действия, график, фазы и ионный механизм их возникновения.

Клетки сердечной мышцы, как и любой другой возбудимой ткани, поляризованы. Мембрана кардио-миоцитов снаружи заряжена поло-жительно, изнутри – отрицательно. Это обусловлено различным содержанием ионов натрия (Na + ) и калия (K + ) по обе стороны мембраны – внутри сердечных клеток больше K + , а снаружи – Na + (рисунок 9). В покое мембрана кардиомиоцитов непроницаема для ионов Na + , но частично пропускает ионы K + . В результате процесса диффузии в соответствии с концентрационным градиентом ионы K + выходят из кардиомиоцита, увеличивая положительный заряд на его поверхности У клеток рабочего миокарда потенциал покоя составляет – 90 мВ.

В потенциале действия различают следующие фазы (рисунок 10):

Фаза 0 – деполяризация, которая характеризуется повышением натриевой проницаемости за счет активации быстрых натриевых каналов клеточных мембран. В этот период Na + лавинообразно входит в клетку. Эта фаза заканчивается достиже-нием критического уровня деполяризации, при котором происходит изменение знака мембранного потенциала (с -90 мВ до +30 мВ).

Фаза 1 – быстрая начальная реполяризация – связана с активацией медленных натриевых и кальциевых каналов;

Фаза 2 – медленная реполяризация (плато), характеризующееся дальнейшим повышением входа в клетку ионов кальция (Са 2+ ). В период плато натриевые каналы инактивируются и клетка находится в состоянии абсолютной невозбудимости или рефрактерности.

Фаза 3 – быстрая конечная реполяризация обусловлена активацией калиевых каналов. В период фазы 3 закрываются кальциевые каналы за счет чего падает кальциевый ток, дополнительно деполяризующий мембрану. Это ускоряет процесс реполяризации;

Фаза 4 – потенциал покоя, в период которого за счет работы калий-натриевого насоса полностью восстанавливается градиент концентраций Na + и K + по обе стороны мембраны. Калий-натриевый насос представляет собой белок встроенный в мембрану, который работает таким образом, что выкачивает из клетки 3 иона Na + и закачивает обратно 2 иона K + .

Билет №2: Физиологическое значение собственных гемодинамических сердечных рефлексов с прессорецепторов устьев полых вен, каротидных синусов и дуги аорты.

Наибольшее значение в регуляции работы сердца имеют собственные рефлексы сердечно-сосудистой системы, которые возникают с прессорецепторов устьев полых вен, дуги аорты и каротидных синусов. Возникающие в этих рецепторах под действием давления крови импульсы поступают в центры кровообращения продолговатого мозга и других отделов ЦНС.

При повышении давления крови в полых венах происходит рефлекторное уменьшениетонуса блуждающего нерва и возрастание тонуса симпатического нерва. Это вызывает ускорение сердечного ритма и увеличение силы сокращений (рефлекс Бэйнбриджа). Благодаря этому рефлексу предсердия и венозная часть системы предохраняются от чрезмерного переполнения при интенсивном притоке крови к сердцу.

Особое значение для регуляции гемодинамики играют рефлексы, возникающие с барорецепторов каротидного синуса и дуги аорты. При повышениисистемного артериального давления раздражение барорецепторов усиливается, это вызывает рефлекторное увеличение тонуса блуждающих нервов и урежение сердечного ритма. В результате уменьшается сердечный выброс и снижается общее артериальное давление. В случае паденияобщего артериального давления, например, при кровопотере, раздражение каротидных и аортальных барорецепторов уменьшается, снижается тонус вагуса и его тормозное действие на сердце слабеет. В результате происходит увеличениесердечного ритма и минутного объема крови, что приводит к восстановлению системного артериального давления. Наряду с механорецепторами в рефлекторной регуляции кровообращения принимают участие хеморецепторы указанных зон, которые реагируют на изменения напряжения углекислого газа и кислорода в крови. При снижении напряжения кислорода или повышении углекислого газа происходит рефлекторное учащение работы сердца и увеличение артериального давления.

Билет №3: Артериальное давление: волны 1, 2 и 3 порядка. Систолическое, диастолическое, среднее и пульсовое давление. Величина АД у детей различного возраста. Факторы, способствующие повышению давления по мере взросления организма.

Волны первого порядка (1) – самые мелкие, пульсовые, связаны с сокращением и расслаблением левого желудочка. Волны второго порядка (2), более крупные, объединяющие несколько пульсовых волн, связаны с фазами дыхания. Во время глубокого вдоха, когда внутриплевральное давление становится более отрицательным, внутригрудные сосуды расширяются, в них эффективно подсасывается кровь из предшествующих сосудов и давление в артериальной части снижается. При выдохе, когда внутриплевральное давление возрастает, отток крови из артериальной части уменьшается, и это приводит к временному увеличению давления крови. Волны третьего порядка (3) связаны с естественными колебаниями тонуса сосудодвигательного центра.

Читайте также:  Антиаритмические препараты при мерцательной аритмии

Систолическое – 110-125, Диастолическое 60 – 85 мм рт. ст., Пульсовое-40 мм рт.ст., Среднее АД-100 мм рт.ст

Рефлекторные механизмы регуляции уровня артериального давления осуществляются путем изменения работы сердца и величины периферического сопротивления. Основными рефлексогенными зонами, в которых локализованы баро- и хеморецепторы являются разветвления сонной артерии и дуга аорты. У взрослых раздражение прессорецепторов этих зон приводит к снижению артериального давления (депрессорный эффект) за счет усиления тонического влияния блуждающего нерва на сердце и снижения прессорного воздействия сосудосуживающего центра на сосуды.

У новорожденных животных (обезьяны) уже функционируют прессорецепторы синокаротидной зоны. Частота импульсов от них зависит от величины артериального давления, но раздражение нервов, идущих от рецепторов вызывает слабовыраженное снижение ситемного артериального давления. Депрессорный эффект с аортальной рефлексогенной зоны отсутствует. Он появляется позже, к 3-4 месяцам, одновременно с формированием тонической активности блуждающего нерва на сердце.

Нестабильны эффекты с хеморецепторов каротидного тельца на гиперкапнию и гипоксию: они не постоянны, либо очень слабые. Только к концу первого года жизни при раздражении хеморецепторов появляется хорошо выраженное повышение артериального давления. Начинают работать регуляторные механизмы перераспределения кровотока при переходе от покоя к двигательной активности.

Сосудодвигательные реакции на гуморальные раздражители появляются раньше, чем на нервные. Так, еще в периоде внутриутробного развития адреналин суживает прекапиллярные сфинктеры. У новорожденных и детей раннего возраста во много раз выше активность ренин-ангиотензинной системы, чем у взрослых. Полагают, что эта система играет у них немаловажную роль в повышении сосудистого тонуса.

Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

Источник: infopedia.su

Потенциал действия кардиомиоцитов.

В естественных условиях клетки миокарда постоянно находятся в состоянии ритмической активности. В период диастолы мембранный потенциал покоя клеток миокарда стабилен – минус 90 мВ, его величина выше, чем в клетках водителей ритма. В клетках рабочего миокарда (предсердий, желудочков) мембранный потенциал, в интервалах между следующими друг за другом ПД, поддерживается на более или менее постоянном уровне.

Потенциал действия в клетках миокарда возникает под влиянием возбуждения клеток водителей ритма, которое достигает кардиомиоцитов, вызывая деполяризацию их мембран (рисунок 3).

Потенциал действия клеток рабочего миокарда состоит из фазы быстрой деполяризации (0 фаза), начальной быстрой реполяризации (1 фаза), переходящей в фазу медленной реполяризации (фаза плато, или 2 фаза) и фазы быстрой конечной реполяризации (3 фаза) и фазы покоя — (4фаза).

Фаза быстрой деполяризации создается активацией быстрых потенциалозависимых натриевых каналов, обеспечивающих резкое повышение проницаемости мембраны для ионов натрия, что приводит к возникновению быстрого входящего натриевого тока. Мембранный потенциал уменьшается от минус 90 мВ до плюс 30 мВ, т.е. во время пика происходит изменение знака мембранного потенциала. Амплитуда потенциала действия клеток рабочего миокарда составляет 120 мВ.

При достижении мембранного потенциала плюс 30 мВ инактивируются быстрые натриевые каналы. Деполяризация мембраны вызывает активацию медленных натрий-кальциевых каналов. Поток ионов Са 2+ внутрь клетки по этим каналам приводит к развитию плато ПД (фаза 2). В период плато клетка переходит в состояние абсолютной рефрактерности.

Затем происходит активация калиевых каналов. Выходящий из клетки поток ионов К + обеспечивает быструю реполяризацию мембраны (фаза 3), во время которой медленные натрий-кальциевые каналы закрываются, что ускоряет процесс реполяризации.

Реполяризация мембраны вызывает постепенное закрывание калиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается — это период так называемой относительной рефрактерности.

Конечная реполяризация в клетках миокарда обусловлена постепенным уменьшением проницаемости мембраны для кальция и повышением проницаемости для калия. В результате входящий ток кальция уменьшается, а выходящий ток калия возрастает, что обеспечивает быстрое восстановление мембранного потенциала покоя (фаза 4) .

Читайте также:  Забита сонная артерия что делать

Способность клеток миокарда в течение жизни человека находиться в состоянии непрерывной ритмической активности обеспечивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na + , а в клетку возвращаются ионы К + . Ионы Са 2+ , проникшие в цитоплазму, поглощаются эндоплазматической сетью.

Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках, в результате, работа насосов нарушается, вследствие этого, уменьшается электрическая и механическая активность миокардиальных клеток.

Потенциал действия и сокращение миокарда совпадают во времени. Поступление кальция из наружной среды в клетку создает условия для регуляции силы сокращения миокарда.

Удаление кальция из межклеточного пространства приводит к разобщению процессов возбуждения и сокращения миокарда. Потенциалы действия при этом регистрируются почти в неизменном виде, но сокращения миокарда не происходит. Вещества, блокирующие вход кальция во время генерации потенциала действия, вызывают аналогичный эффект. Вещества, угнетающие кальциевый ток, уменьшают длительность фазы плато и потенциала действия и понижают способность миокарда к сокращению.

При повышении содержания кальция в межклеточной среде и при введении веществ, увеличивающих вход ионов кальция в клетку, сила сердечных сокращений увеличивается.

Соотношения между фазами ПД миокарда и величиной его возбудимости показаны на рисунке 5.

Вследствие деполяризации, мембрана кардиомиоцитов становится абсолютно рефрактерна. Период абсолютной рефрактерности у нее продолжается 0,27 с. В этот период мембрана клетки становится невосприимчивой к действию других раздражителей. Наличие длительной рефрактерной фазы препятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что привело бы к невозможности осуществления сердцем нагнетательной функции.

Фаза рефрактерности несколько короче длительности ПД миокарда желудочков, который длится около 0,3 с.

Длительность ПД предсердий – 0,1 с, столько же длиться систола предсердий.

Период абсолютной рефрактерности сменяется периодом относительной рефрактерности, во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения. Он продолжается 0,03 с.

После периода относительной рефрактерности наступает короткий период супернормальной возбудимости, когда сердечная мышца может отвечать сокращением на подпороговые раздражения.

Источник: vuzlit.ru

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ КЛЕТОК МИОКАРДА

КРОВООБРАЩЕНИЕ

Клетки многоклеточных организмов теряют непосредственный контакт с внешней средой и находятся в окружающей их жидкой среде — межклеточной, или тканевой, жидкости, откуда черпают необходимые вещества и куда выделяют продукты обмена.

Состав тканевой жидкости постоянно обновляется благодаря тому, что эта жидкость находится в тесном контакте с непрерывно движущейся кровью. Из крови в тканевую жидкость проникают кислород и другие необходимые клеткам вещества; в кровь, отте­кающую от тканей, поступают продукты обмена клеток. Помимо крови, от тканей отте­кает лимфа, которая также уносит часть продуктов обмена. Кровь движется по кровеносным сосудам благодаря периодическим сокращениям сердца. Сердце и сосуды составляют систему кровообращения. Это — одна из важней­ших физиологических систем.

Многообразные функции крови могут осуществляться лишь при ее непрерывном движении в сосудах, т. е. при наличии кровообращения. У всех млекопитающих и птиц полностью разделенные большой и малый круги кровообращения и четырехкамерное сердце с правым и левым желудочками.

Оттекающая от тканей венозная кровь поступает в правое предсердие, а оттуда в правый желудочек. При сокращении его кровь нагнетается в легочную артерию. Протекая через легкие, она отдает углекислый газ и насыщается кислородом. Система легочных сосудов: легочные артерии, артериолы, капилляры и вены — образуют малый круг кровообращения. Обогащенная кислородом кровь из легких по легочным венам поступает в левое предсердие, а оттуда в левый желудочек. При сокращении последнего она нагнетается в аорту, артерии, артериолы и капилляры всех органов и тканей, а оттуда по венулам и венам притекает в правое предсердие. Система этих сосудов образует большой круг кровообращения. Схема строения сосудистого русла приведена на рис. 115. ‘

Читайте также:  Стеноз коронарных артерий

Рис.115. Кровообращение человека (схема). 1 — аорта: 2 — печеночная артерия; 3 — кишечная артерия; 4 — капиллярная сеть большого круга: 5 — воротная вена; б — печеночная вена; 7

ниж­няя полая вена; 8 — верхняя полая вена; 9 — пра­вое предсердие; 10 — правый желудочек; 11 — ле­гочная артерия; 12 — капиллярная сеть легочного круга; 13—легочная вена; 14-—левое предсердие; 15—левый желудочек. Черным цветом показаны лимфатические сосуды. Рис.116. Строение проводящей системы серд­ца (схема). 1 — верхняя полая вена; 2 — синусно-предсердный (сииоатриальный) узел; 3 — коронарный синус; 4 — предсердно-желудочковый (атриовентрику-лярный) узел; 5 — предсердно-желудочковый пучок (пучок Гиса); 6—ножки предсердно-желудочко-вого пучка; 7 — папиллярные мышцы; 8 — нижняя полая вена; 9 — проводящие миоциты (волокна Пуркинье).

Сокращения сердца наблюдаются вследствие периодически возникающих процес­сов возбуждения в сердечной мышце. Сердечная мышца (миокард) обладает рядом свойств, обеспечивающих ее непрерывную ритмическую деятельность: возбудимостью, автоматией, проводимостью, сократимостью (и способностью^ к. расслаблению), реф-рактерностью.

Возбудимость — способность при действии раздражителей приходить в состояние возбуждения, при котором изменяются биохимические и биофизические свойства мы­шечной ткани.

Возбуждение в сердце возникает периодически под влиянием процессов, протекаю­щих в нем самом. Это явление получило название автоматии. Способностью к автоматии обладают определенные участки миокарда, состоящие из специфической (атипической) мышечной ткани, бедной миофибриллами, богатой саркоплазмой и напоминающей эмбриональную мышечную ткань. Специфическая мускулатура образует в сердце проводящую систему — синусно-предсердный (синоатриальный) узел — водитель ритма сердца (в стенке предсердия у устьев полых вен) и предсердно-желудочковый (атрио-вентрикулярный) узел (в стенке правого предсердия, отделяющий его от правого желу­дочка). От этого узла берет начало предсердно-желудочковый пучок (пучок Гиса), прободающий предсердно-желудочковую перегородку и разветвляющийся на правую и левую ножки, следующие вдоль межжелудочковой перегородки. В области верхушки сердца ножки предсердно-желудочкового пучка загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волокон Пуркинье), охватывающих рабочий миокард желудочков (рис. 116).

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ КЛЕТОК МИОКАРДА

В естественных условиях клетки миокарда постоянно находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно гово­рить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентрационным градиентом К 4 ‘.

Потенциалы действия (ПД), зарегистрированные в разных отделах сердца при помощи внутриклеточных микроэлектродов, существенно различаются по своей форме, амплитуде и длительности (рис. 117, А, Б). На рис. 117, В схематически показан потен­циал действия одиночной клетки миокарда желудочка. Для возникновения этого потен­циала потребовалось деполяризовать мембрану на 30 мВ. В потенциале действия разли­чают следующие фазы: 1) быструю начальную деполяризацию — фаза 0/1; 2) медлен­ную реполяризацию, так называемое плато — фаза 2; 3) быструю реполяризацию — фаза 3; 4) фазу покоя, или медленной диастолической деполяризации — фаза 4.

Фаза 0/1 в клетках миокарда предсердий, сердечных проводящих миоцитов (воло­кон Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза потенциала действия нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика потенциала действия происходит изменение знака мембранного потенциала (с —90 мВ на +30 мВ).

Деполяризация мембраны вызывает активацию медленных натрий-кальциевых ка­налов. Поток Са 24 ‘ внутрь клетки по этим каналам приводит к развитию плато потен­циала действия (фаза 2). В период плато натриевые каналы инактивируются и клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит актива­ция калиевых каналов. Выходящий из клетки поток К ‘ обеспечивает быструю реполя­ризацию мембраны (фаза 3)., во время которой кальциевые каналы закрываются, что ускоряет процесс реполяризации (поскольку падает входящий кальциевый ток, деполя-ризующий мембрану).

| следующая лекция ==>
РЕГУЛЯЦИЯ ПРОИЗВОЛЬНЫХ ДВИЖЕНИЙ | Функции проводящей системы сердца

Дата добавления: 2016-03-27 ; просмотров: 641 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник: helpiks.org